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I. INTRODUCTION

This quarterly technical summary report covers the
work performed curing the period July through September 1967.
Work previously completed or currently in progress 1is mentioned
only as it relates to analyses completed during this reporting
period.

Analyses completed, for which results Have been re-
ported, are discussed in Section II under descriptive headings.
Section III contains a discussion of the support and service
tasks performed for in-house projects and for other VELA-
UNIFORM participants. Appendix A is a listing of those organi-
zations receiving SDL data services during this period.

II. WORK COMPLETED

A. Matched Filtering and Array Processing of Long-
Period Rayleigh Waves

The matched filter technique takes advantage »f
the Rayleigh wave dispersion to detect the signal in the Le. 2=
ground noise. Analogous to a chirp radar the method forms a
cross correlation of the previously recorded Rayleigh wave from
a given epicentral region with new data recorded at that station.
This cross correlation will be significant only when a second
Rayleigh wave arrives with the same dispersive characteristics.
The output will be a symmetrical pulse approximating the auto:
correlation of the Rayleigh waveform.

Array summing is easily achieved using matched
filters. Each station in a network must use its own matched
filter to detect the surface waves from a given earthquake
region. However, the signal output of all the stations will
be pulse waveforms which are quite similar. Consequently, the
array combination of these outputs over an entire network re-
quires only the alignment of the matched filter output pulses
and summing.

The data nused this experiment were two
Greenland Sea earthquakes witi 'he same epicenter; one mag-
nitude 4.6 and one at magnitude 4.9. The surface waves from
the larger event were readily detectahble at LASA and the 13
LRSM stations. The map showing the locations of the 13 LRSM
stations and LASA is shown in Figure 1.
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Figure 1. Map Showing Locations of LRSM and Observatory
Instruments Used in This Study
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Figure 2 shows the Rayleigh wave from the weaker
equation recorded at LASA at a single sensor and processed in
various ways. The first trace is the unfiltered signal in the
noise background. The second trace is the raw data filtered
by a bandpass from 15 to 50 seconds period. The third trace
shows the matched filter impulse responses which is the re-
cording of the Rayleigh wave from the larger earthquake received
in this particular site. The fourth trace is a matched filter
output applied to the unfiltered data and the fifth trace is the
same matched filter output processed through the bandpass filter.
The effect of compressing all of the Rayleigh wave energy back to
the same arrival time is readily noticed Ly the signal pulse in
the matched filter output.

Figure 3 shows the similar results from the 21
long-period verticals summed together. Over an array of LASA's
size the Rayleigh dispersions from a teleseismic event are simi-
lar enough so that the array can be summed before matched fil-
tering. As a result a single matched filter can be applied to
the phased sum.

Figure 4 shows the raw data and the matched fil-
ter outputs from several LRSM stations and the phased sum of 14
matched filter outputs. 1In all cases the matched filter output
produces a single pulse which is essentially the autocorrelation
of the Rayleigh wave recorded at that station. The phase sum of
all such correlation produces a pulse with a significant reduc-
tion in the background noise.

From this test which used one strong Greenland
Sez earthquake to detect a weak one at the same site, we con-
cluded that:

1. B! means of a matched filter, the mean signal-
to-noise ratio for the surface wave on 21 LASA LPZ seismograms
was increased 6 db over that of seismograms filtered with a band
pass of 15 to 50 seconds period. Mean signal-to-noise improve-
ment of 3 to 4 db was obtained for 13 LRSM stations.

2. The signal-to-noise ratio of the matched
filtered seismograms was independent of whether the seismograms
were pre-filtered with a band pass filter for LASA. Pre-
filtering LRSM seismograms produced matched filter results about
1.5 db better than not filtering.
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3. An additional increase of signal-to-noise
approachyN (N = number of sensors) was achieved by phased sum-
mingy the matched filter outputs for LASA if an inter-sensor
spaciry of at least 30 km was maintained. A similar improve-
ment was observed for the LRSM stations which had a still
larger (but not uniform) spacing.

4. For array apertures as great as the full
diameter of LASA, phased equalized summations showed little
increase ( <1 db) in signal-to-noise over simple phased sums,
both heving been bandpass filtered.

5. Phased sums of matched filter outputs were
consistently 7-9 db above corresponding phased sums of band
pass filtered seismograms.

6. A comparison of matched filter phased sums
for 13 LASA and 13 URSM stations (spacing <30 km) showed
signal-to-noise gains of 17 and 15 (16) db respectively, over
the mean of individual bandpass filtered S/N values. In both
cases this was within % db of the value expected for uncorre-
lated noise.

7. Aperture at LASA causes little nr no signal
loss for matched filter phased sums and only moderate signal
loss (.5 to 3 db) on bandpass filter phased sums for apertures
up to 200 km. There was also little or no signal loss on phase
summing the LRSM matched filter seismograms over a continental
size aperture.

8. Even for the sensor spacings at which signal-
to-noise gains were below those expected for uncorrelated noise,
the percentage increase in signal-to-noise adding additional
sensors was approximately the same as for the uncorrelated case.

B. Beamforming the Extended E3 Subarray at LASA

Short-period seismograms representing nine tele-
seismic earthquakes recorded by vertical component instruments
in the extended E3 subarray at the Montana LASA were bandpass-
filtered and beamformed to determine the effect on average in-
put signal-to-noise ratio, signal, and noise.

=9




The data used in this study are nighttime re-
cordings, occurring over a two month period, January-March,
1967. We refer to the enlarged E3 subarray which has peen in
operation since December 1966. This subarray has a diameter
of 19 kilometers, and contains 25 sensors with spacings 3
kilometers, as shown in Figure 5. The source data shown in
Table 1 were taken from P.D.E. cards furnished by the USC&GS.
All outputs were bandlimited either in the range 0.4-3.0 cps
or 0.6-2.0 cps, using 4-Pole Butterworth recursive filters.

Beamforming

Two procedur.s were used in selecting data to
be heamformed. Our objective in the first was to evaluate
the performance of the extended array, and we concerned our-
selves with varying the number of inputs, N, to a beam as
opposed to evaluating the effect of inter-sensor spacing, A.
Beams were formed on P arrivals using data prefiltered to the
bar.d 0.4-3.0 cps for N equal to 6, 12, 13, 18, 19, and 25.
These correspond to traces recorded in the outer (or inner)
ring, outer 2 rings, inner two rings plus the center, outer
3 rings, inner three rings plus the center, and the entire
subarray. We have already pointed out that a uniform distrib-
ution of sensors was not considered in beamsteering these data.
Consequently, it follows that about the only meaningful refer-
ence to spacing is relative to the minimum separation of sen-
sors contributing to the beams discussed above are 9.5 or 3
(outer ring or inner ring, respectively), 4.7, 3, 3, 3, and 3.

A similar procedure was used for each of nine
events to determine the average effect of a variable number
of beam inputs {N) on signal loss, rms noise reduction, noise
power reduction at 1 cps, and signal-to-roise ratio enhauce-
ment, each quantity being referred to a mean taken from the
input traces.

Table 2 (lists fcur sets of traces contributing
to beams containing six irputs each ‘N=6), where each set
represents traces recorded on an individual ring of the subarray.
This procedure was our first attempt at holding N constant and
varying &, in this instance a circumferential measurement.

-4-
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Table 2.

Sensor Groups and Spacing for N=6

~Circumferential Spacing (km)

Contributing Sensors

I* 6% 8* g'*
21 4] 61 71
32 52 62 82
23 43 63 73
34 54 64 84
25 45 65 75
36 56 66 86

* Plots Are Averages Taken Over Seven Events




Seven of the original nine events were used to obtain average
values. The procedures discussed thus far were extended to
include power spectra based on individual channels and sum
traces. Spectral estimates were computed over 60 seconds of
noise (1200 digital points) using 120 lags.

In the second part of the study we used seismo-
grams recorded during the night of 17 March 1967 to establish
a relationship between inter-sensor spacing and noise reduction.
Two experimental methods were used to determine noise reduction
by beaming either three or seven traces; the first method relicd
on the zero lag autocorrelations and cross-correlations as des-
cribed in the following section, while the second consisted of
trace summation. In the case of N=3, uniform sensor spacings
of 3, 4, 6, 8, 9, 10, 14, and 16 kilometers were used and for
N=7 separations of 3, 6, 8, and 9 kilometers were employed.
Solutions were cbtained for data limited to the band 0.4-3.0 cps
after which we repeated the process with traces prefiltered to
0.6-2.C cps.

In Tables 3 and 4 we have listed sensors which
contributed to 3-element and 7-element beams respectively. As
shown in Table 3 outputs from either 2 or 6 beams were used to
compute average noise reduction values. Referring to Table 4,
we note that only one beam for each spacing was used to des-
cribe noise behavior.

The results describe the effectiveness of beam-
steering outputs from the extended E3 subarray (Figures 6, 7, 8,
and 9), and the effect of inter-sensor spacing on short-period
bearnforming results (Figures 10 and 11).

Figuvre 6 is a plot nf noise reduction, either rms
or power at 1 cps, as a function of N. The figure illustrates
four significant points: first, N% reduction is obtained for
noise power at 1 cps only in the case of N=6 (the outer ring); X
second, the reduction of rms noise levels never quite reached N°;
third, noise reduction is less favorable, relative to N%, for
greater N; and fourth, beams made of outputs from the outer
ring(s) yield more noise reduction than those consisting of
traces recorded in the inner ring(s). The last result is ex-
plained by the fact that inter-sensor spacing tends to be
greater on the outside rings, and the noise is therefore less
correlated between adjacent sensors.

-5-
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Table 4. Sensor Groups and Spacin; for N=7
B Spacing (km)
3 6 8 9
v
o
2 10 10 10 10
> 21 4] 61 7
o 32 52 62 82
P 23 43 63 73
al 3 54 64 84
v 25 45 65 75
3 36 56 66 8¢
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Figure 7 shows average signnl-to-noise gain as
a function of N. Here we see immediately that enhancement
is never achieved, due largely to the fact the rms noise re-
duction falls short of N? as shown by Figure 6. and partly
because 1-2 db of signal is lost in the beamforming process.
We further note that enhancement is less favorable relative
to N% for larger N. and that the outer ring(s) yield better
results than the inner ring(s).

Figures 8 and 9 show noise reduction a... signal-
to-noise enhancement versus sensor spacing for N=6. 1I. this
case beams were formed using outputs from individual rings so

that values plotted at £ = 3 km cuorrespond to data recorded on
the inside ring, \ = 6 the second ring, A~ = 8 the third ring,
and A = 9.5 km the outside ring: these spacings could more

appropriately be called "minimum" intervals. As shown in

Figure 8, noise power at 1 cps is reduced by N% in the 4 interval
6-8 kilometers, and rms noise is reduced to within 1 db of N% at
A = 6 and remains reasonably constant thereafter. On the other
hand, signal-to-noise enhancement {Figure 9 reaches a maximum,

+ 5 db, at 4= 6 and remains essentially constant beyond. Once
again we are reminded that imprecision in the beamforming process
accounts for 1-2 db signal loss.

We turn now to examples of beamforming in which N
has been held constant and spacing between adjacent sensors has
been changed from a minimum of 3 km to a maximum of 16 km
(Figures 10 and 11). Data plotted on Figure 10 were prefiltered
to 0.4-3.0 cps, while those shown in Figure 11 were bandlimited
in the range 0.6-2.0 cps. In both figures the dashed curves
rep. *sent results for noise reduction based in part on the
aver ..'e of the noise mean squares whereas the plotted points are
based »n the average rms value input to the beam. Referring to
Figure 10, we note that the minimum sensor spacing indicated by
either experimental method for N=3 or N=7 is about 6 km, if N%
noise reduction is desired. Actually, values based on average
rms reach N? reduction at 8 or 9 km. It is important to remember
that the plotted data for N=3 are really averages of either two
or six beams, whereas, each plot for N=7 was taken from a single
beam. As shown in Figure 11, the minimum spacing indicated for X
data prefiltered 0.6-2 cps is about 5 km, and rms values reach N
at about 8 km spacing.
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Data are SPZ recordings of 7
earthquakes & associated noise
prefiltered 0.4-3.C cps.

N=6
e rms noise
noise power at 1 cps

]
) inside ring
2 second ring
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utside rin
-6 4 0 g
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Figure 8. Average Noise Reduction By Beamforming
Six Outputs of The Extended E3 Subarray




Data are SPZ recordings of 7 earthquakes &
associated noise prefiltered 0.4-3.0 cps.
N= number of outputs summed = 6

| inside ring

2 second ring

3 third ring
4 outside ring

3
o2 s 044

»

S/N Gain (db)

£ z ‘ s 8 0
- Circumferential Sensor Spacing (km)

Figure 9 . Average S/N Gain By Beamforming Outputs
From The Extended E3 Subarray
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The following conclusions are based on the results
of a beemforming study which used short-period vertical-component
seismograms recorded during January-March 1967 in the extended E3
subarray at the Montana LASA. With the exception of beams made
up of seven inputs, our results represent averages taker from
several beams.

Beams conzisting of prefiltered (0.4-32.0 cps)
inputs from the entire extcnded E3 subarray do not yield Nt
improvement in signal-to-noise ratio. This is due primarily to
the fact that noise is partly correlated between adjacent sensors
and therefore is not reduced by as much as Nﬁ, and partly to
signal losses accompanying the beamforming process.

If input data are prefiltered to 0.4-3.0 cps,;i
beams compos=d of six tracdes reduce noise by approximately N
when element spacings are equal to or greater than 6 kilometers.

For data prefiltered 0.4-3.0 cps, beams consisting
of either 3 or 7 inputs reduce the average of the noise mean
squares and average rms noise approximately by at a minimum
sensor separation equal to or greater than 6 kilometers. If the
data are prefiltered 0.6-2.0 cps, the minimum spacing is reduced
to about 5 kilometers.

Average signal loss due to imprecise beams amounts
to 1-2 db.

C. Spatial Correlation of Amplitude Anomalies

Spatial correlations of amplitude anomalies have
been conducted over LASA and LASA subarrays to test the hypothesis
that these anomalies exhibit spatial stationarity.

It has been demonstrated(l’z) that the normelized
short period peak-to-peak amplitudes of teleseismic events have
a log normal distribution. That is, if the amplitudes of a set
of events from the same geographic region are measured and their
logarithms are taken, then we find that
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N
log ~,, = log L.. -1 log L. .,
9 255 9Ly, L j=Zl 9 Ly,

has a normal di«tribution. In this equation, the Lij are either
the measured peak-to-peak amplitudes at all elements in a LASA
subarray or are the peak-to-peak amplitudes observed at the
center elements of tue subarrays. The index j is on the seismom-
eter and i1 is an event index.

The distribution of log amplitudes is not normal
if the collection includes all elements in LASA. The variance
of log aj4 is larger in the case where the Lij are the observed
amplitudes at the center elements. The variances are the same
at each subarray when the Ljj are the amplitudes of the elements
in a subarray. Thus, these variances can be pooled after nor-
malization.

The anomalies are assumed to be real in that a
precisely repeated event should produce the same amplitudes at
the seismometers as the original. The anomalies vary however
for events from the same geographic region and it is unlikely
that a calibration of the earth would be a practical procedure
with which to eliminate anomaly effects. Rather, & statistical
approach seems to be more reasonable.

The fact that the anomalies in the subarrays can
be pooled after normalization suggests that one may successfully
hypothesize that these anomalies exhibit spatial stationarity.
That is, although there may be slowly varying effects with dis-
tance, with these removed the expectation of a particular ampli-
tude anomaly is independent of spatial location.

Further we wish to test whether the anomaly
process is covariance stationary. If so, then the covariance
function will serve as a measure of the distance which should
be placed between seismometers so that they will exhibit inde-
pendent amplitude estimates. Moreover, since the anomalies are
log-normal, so another statistic is needed. The covariance
function is a complete statistic for normally distributed variables.
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To test the possibility cf correlation among
the peak-to-peak amplitudes across all of LASA we selected
signals from eleven Fiji Island earthquakes which occurregd
at 2439 azimuth and from 9,500 km to 10,500 km distance from
the center of LASA. From these eleven events, correlation co-
efficients were computed as spatial displacements were made
over LASA. 1In the computatinns, the logarithms of the event
amplitudes have been normali.-d so that anomalies from all
subarrays have a common mean. We define the estimate of the
coefficient of correlation to be

2 2. %
re (Ixy) / (IxA% (JyHR

Since all eleven events were relatively closely
grouped in comparison to the overall path, the average of the
logarithms of the normalized peak-to-peak amplitudes at a given
subarray was used as an estimate of the true value for that sub-
array (Table 5).

These average values were used in the calcula-
tions of the spatial correlation coefficients. Correlations
were computed along a line parallel to the incoming signal (243°az.)
and another set along a line perpendicular to the incoming signal
(153° az.). Due to the configuration of LASA, few displacements
exist where enough subarrays intersect to compute a valid coef-
ficient of correlatio~. Figure 12 presents the coefficients of
correlation plotted against the spatial shifts using the average
logarithm of the normalized peak-to-peak amplitudes over all
events as the estimate of the true value for each subarray.

The correlation coefficients for the individual
events were computed. That is, each event was considered singly
as the spatial shifts were made across LASA at 153° and 243°
azimuth. Figure 13 presents the graph of ¥ vs. the spatial
shifts. It is of interest to compare the graphs of Figures 12
and 13, i.e the coefficient of correlation of the average coef-
ficient of correlation of the individual events vs. displacement.
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After examining correlations over all LASA, we
directed our attention to spatial correlations over subarrays.
The concept of spatial shifting over a subarray is the same as
that over all of LASA except that unlike LASA +he configuration
of a subarray is well defined in terms of concentric circles
and radial spokes every 60°. The spatial shifts over the sub-
arrays were made along the legs (radial sro;'@s) in this in-
stance rather than with respect to the origin of the event.

Three N. Colombia events (21 Dec. 65; 21 April 66;
12 June 66) were chosen on the basis of availability of complete
tapes of all 525 instruments in LASA for events which originated
very close together. Again the logarithms of the normalized data
were used to compute the coefficient of correlation, and the
means of the data samples were set to zero. As spatial displace-
ments were made across each subarray (at 0.5 km increments), co-
efficients of correlatinn were computed and graphs of coefficients
vs. displacement were drawn for each leg for every subarray. ‘he
patterns in the graphs were cross-checked among the same subarrays
for all three eventr and among similarly oriented subarrays for
the same event. No consistent relationships were discovered with
this approach. Contouring seemed to suggest certain patterns
(viz., that the contour "pointed" towards the direction of the
event) and some consistencies were found, but the presence of
exceptional and contradictory contours made such a conclusion at
best doubtful.

Coefficients of correlation were computed over
each subarray for paired events using the normalization described
earlier the eqguation. That is, the twenty-five readings of the A
subarray for, say, the 21 December 1965 earthguake, were tested
against the respective twenty-five readings of this subarray for,
say, the 21 April 1966 earthquake. The three independent earth-
quakes yield three distinct pairs for testing in this manner, and
each pair of events has a maximum of twenty-one coefficients to be
computed--one coefficient corresponding to each subarray.

In nearly every case, the ccefficient was signi-
ficant (i.e. correlation existed) and in many cases (nearly two-
thirds) the coefficients were between .8 and 1.0. Table 6 sum-
marizes the results of these calculations. This test can be
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Table 6.

Bl
F3
F4

AO

c4
B4
cl
c2
B2
Cc3
D3
D4
Dl
D2
E3
E4
El
rl
E2

F2

Subarray Correlations For The Colomhia Earthquakes

21 Dec 65 21 Dec 65 21 Apr 66
21 Apr 66 12 Jun 66 12 Jun 66
Computed Critical Computed Critical Computed Critlical

r r, 5% ' r xr, 5% r x, 5%
0.693 0.388 0.613 0.388 0.537 0.388
0.955 0.388 0.851 0.388 0.776 0.388
.987 0.388 -0.477 0.388 -0.503 n.388
0.418 0.338 0.637 0.388 0.235 0.388
0.815 0.388 0.754 0.388 ¢.959 0.388
0.733 0.396 0.933 0.388 0.943 0.396
0.815 0.1388 0.754 0.396 0.790 0.396
0.939 0.388 0.893 0.388 0.844 0.388
0.898 0.388 0.782 0.388 0.639 0.388
0.857 0.1388 0.767 0.388 C.945 JJJBB
0.902 0.388 0.746 0.388 0.836 0.388 |
0.986 0.388 0.977 0.388 0.979 0.388
0.563 0.388 0.368 0.388 0.634 V.388
0.831 0.404 0.882 0.404 0.931 0.388
0.412 0.396 0.452 0.388 0.511 0.396
0.945 0.388 0.815 0.3388 G.843 0.388
0.450 0.388 0.511 0.388 0.805 0.388
0.900 C.388 0.825 0.388 0.806 0.388 I
0.956 0.388 0.916 0.388 0.898 0.388
0.872 0.388 0.889 0.388 0.901 0.388
0.956 G.%068 0.860 0.388 0.860 0.388

Subariay correlations for the Colombia earthquakes

The critical values are determined by using the "t*
distribution where

l-x

o g 1 3-12 )k

A detailed explanation is presented in Snedecor's
"Statistical Methodr” Fi’th Bdition, pp 173, 174.
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considered as examining the correlation among the instrument
responses as the source distance is varied. In the next

step, the converse of this procedure was done -- the respective
elemen-s for similarly ori 'nted subarrays (account being taken
for long and short configurations) were inspected for correla-
tion for each earthquake. This time, correlations were not
detected with the exception of one case which may ascribed to
chance (Table 7).

Only tertative conclusions can be drawn from
this data. The sparce sampling of the LASA array limits the
reliability of the correlation coefficients which were computed.
For this reason a uniformly spaced grid of seismometers would
have aided this study.

It is likely that the anomaly process cannot be
considered to be spatial covariance stationary. Since this
process is, in fact, a description of the underlying geology, one
might have hypothesized this from the beginning. We do not have
a simple explanation for the log-normal distribution of the anom-
alies or for their apparent stationarity other than this effect
aiso reflects the geology.

D. Frequency and Wave Number Spectra of Vertical
Arrays

We have writter. a new program to compute the f-k
spectra for vertical arrays (VFKSPTRM) . The normal f-k spectra
for surface arrays must consider two space variables and one time
variable. The Fourier transform of the three-variable furttion
(signal spectra, noise spectra, and array response) leads to two
wave number variables, kyx. ky and one frequency variable. To plot
three-dimensional f-k spectra on a two-dimensional page our normal
practice is to plot a contour map of the f-k spectra as a function
of kx and ky at one particular frequency.

-11-



The vertical array has one less dimension than
a surface array. Consequen‘ly, a contour map of vertical array
responses can exhibit all the pertinent variables simultaneously.
The new SDL program plots frequency on the vertical axis and wave
number on the horizontal axis. As in the case of the surface
arrays, the impulse response of a vertical array assumes an input
with a ceonstant frequency spectra. The normal contour plot of
the f-k spectrum for an impulse will show no variation in the
frequency variable. Thus the entire impulse response of the
array can be indicated by a strip at the kottom of each f-k spec-
tra computed.

To demonstrate the f-k spectrum program, we show
on Figure 14 the f-k spectrum of a synthetically generated signal.
The signal model is generated with 1.25 cps pulse using an 0.8
second echo at the source and with a receiver echo delayed by
using appropriate uphole times obtained from the propagation
velocity observed at APOK. The reflection coefficient at the
surface is assumed to be 0.9. The split peak in the spectrum is
due to the source echo which nulls at 1.25 cps.

An example of an f-k spectrum for some synthetic-
ally generated noise at APOK is shown on Figure 15. Noise is
simulated bv taking random numbers from a Gaussian population
and passing them through a filter tuned to 0.25 cps and 2.C cps
to obtain noise similar in spectral characteristic to that ob-
served at APOK. The model of the noise at underlying depth is
obtained from a stationary Markov chain; for example, the noise
at the ith level is taken as a fraction of the noise at the
(i-1) th channel added to a new random realization passed through
the tuned filter. In the model the sharp spectrial peak at .25 cps
is for highly correlated noise between channels contrasted with
that at 2 cps when the noise is uncorrelated between channels.
The strong correlation at low frequencies results in a peak which
is spread brecadly over all wave numoers.

Ambient Noise

The ambient noise spectrum derived from a four
minute sample is shown on Figure 16. Comparing this with noise
generated from a Markovian process, the .25 and 2.0 cps peaks

-12-
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Figure 14. Simulated Signal Using Acoustic Log
Propagation Velocities Measured at APOK
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Figure 15. Simulated Noise
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Figure 16. Unfiltered Noise




are of simiiar character suggesting very high correlation be-
tween channels for the .25 cps peak and very low correlation
for the 2.0 cps noise peak. The principal difference between
the observed noise at APOK on Figure 16 and the synthetic
noise generated using the extremely simple line:r state model
is a rotation of the whole pattern toward negative wave num-
bers;. This same effect can be produced by inputting the
random function to a process which produces negative delays
or lead time equal to X/C representing conversion to up-going
waves where the apparent vertical phase velocity C is obtained
from the slcpe of the line shown on Figure 16. The value ob-
tained for C is approximately 12 km/sec corresponding to an
incidence angle ~f about 75°. This suggests the possibility
of Stonely waves guided upwards along the thick low-velocity
layer, dipping 15°. This possibility is qualitatively con-
sistent with the anomalous signal shown ~n Figure 18.

Other differences between observed noise on
Figure 16 and the model on Figure 15 are the three noise
peaks at 1.0 cps, 1.4 cps, and 1.6 cps. The 1.0 and 1.4 peaks
appear to be highly correlated between channels; the 1.6 shows
low correlation in the noise between adjacent channels. These
peaks in the signal band appear to have nearly infinite ver-
tical phase velocity and are probably due to Rayleigh waves,
i.e., vertical and possibly also horizontal standing waves
trapped in the basin bounded by higher velocity basement com-
plex rocks.

A 6-second sample of the earthquake pulse is
shown on Figure 18. The up-going pulse gives spectral peaks
at .85 cps, 1.20 cps, and 1.9 cps. The apparent vertical
phase velocity is approximately the same as that shown by
Figure 17 for the noise preceding the signal. Lower than
expected vertical phase velocities suggest departure from the
model of a pulse and echo based on acoustic log velocities
(Figure 14). The apparent velocities are lower by at least
fifteen to twanty percent. Also, the down-going earthquake
pulse is even more anomalous. The amplitude is down 6 db from
that of the up-going pulse; the apparent vertical velocity is
very low; and the .85 cps peak down-going phase appears to con-
tain lower frequency. A possible explanation of the anomalous
signal can be based on dipping beds.

=] 3=




This may help to explain the anomalous low am-
plitude down-going r:flection. The anomalous apparent vertical
velocities may result from forward scattered P-S conversions,
especially at the surface, due to anomalously high angle of
emergence. Looking again at Figure 18, there appears to be
signal peaks at nearly infinite vertical phase velocity.

Figures 16 and 17 show the f-k spectra of two
samples of noise recorded at the UBO vertical array. In con-
trast to that at APOK the character of tle noise as seen at
UBO shows a nigh degree assymmetry. Thus the enecgy conversion
or the strongly dipping beds which cause more upgoing than
downgoing energy at APOK are not observed to play an important
role at the UBO vertical ar—ay. There is no obvious indication
of reflected P wave noise at UBO although this type of noise
may be obscured by the array response.
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Figure 18. Main Pulse of The Aleutian Earthquake




IITI. SUPPOR1 AND SERVICE TASKS

A. VELA-UNIFORM Data Services

As part of the contract work-statement, the SDL pro-
vided one or more of the following support and service functions
for VSC and other VELA participants:

= copies of 16 =2nd 35 mm film.

= playouts of earthquakes and special events

- copies of existing composite analng tapes

- composite analog tapes of special events

= use of 1604 computer for checking out new programs Or
running production programs

B copies of digital programs

- digitized data in standard formats or special formats
for use on computers other than the 1604

- running SCL producticn progzams, such as power spectral
density and array processing one specified data

- digital x-y plots of power spectra or digitized data

= signal reproduction booklets

- space for visiting scientists utilizing SDL facilities
to study data and exchange information with SDL person-
nel.

During this report period, 55 such projects were completed
and the 15 organizations receiving these services are listed in
Appendix A.

B. Data Library

The Data Library contains approximately 7,000 digitized
seismograms. 185 digital computer programs and 293 composite analog
magnetic tapes, all available for use by the VELA-UNIFORM program.

The following additions were made during this period.

il Digital Seismograms - 163 including
- data from 12 explosions and 3 underwater events
- noise samples from LASA, TFO, UBSO, CPSO, and WMSO
= deep well data
- 37 earthquakes recorded at various stations

2, LASA Data - 86 digital tapes
- there are a total of 1076 digital tapes in the library
including 831 field tapes. There is also a master cal-
ibration tape which contains the magnification (digital
counts per millimicron) of each sensor for every sub-
array. These magnifications have been computed for all
calibration tapes currently in house.

- 15 -



As each new calibration is received, it is routinely
rn through the new program CALIBR and added to the
master tape.

Digital Programs - 15 including:

BACKFILE - to backspace files on tape.
DPWELLSN - deepwell data processing program tor S/N
= S e ,

ratio computations.

I'PRGSEIS - program to merge two seismograms.

PARTLCUH - this program computes partial coherence
functions for taped data as well as the amplitude and
phase of the assoc. transfer function.

RODBUDSC - the subset program retrieves seismic records,
no matter nhow they are requested, in the same order that
they are written on a library tape.

LASACORL - to process LASA seismic data.

: ; -3 k .
POLFIT the polynomial Y = Bl + B, % op o BK+l X" is

fitted for all degrees k, likikmax according to the ob-

served independent and dependent variables. A printer
plot of Y is cbtained with the use of subroutirg PLOT.

ISOFIL - this program computes and/or applies a multi-
channel isotropic processor to seismic array data. An
annular ring noise model and, either a point or a disc
signal model, can he specified. The program then solves
the multichannel Wiener-Hopf equation in the frequency
domain to get the op:imum filter which rejects the noise
and passes the signal.

SUBSETSL - to subset a packed or unpacked standard SDL
library tape, a LASA format tape, or a subset tape. 1

DESPIKL - to remove spikes from a seismogram by simply
] ! . - Sl !
inserting a cosine function in a specified interval.

UNPKLTP - to unpack an SDL standard library tare. Each
data point for N channels (N<4) is packed as N 12 - kit
integer values in a parallel wanner. By simply shift-
ing an appropriate ro. of bits to the far left in the
word and then shifting 36 bits to the right justify, the
desired 12-bit data point is retrieved.

- 16 ~




JEFALUMP - this program computes and/or applies a
multichannel isotropic .~ocessor to seismi.c array
data. An actual noise mcdel is used computed from
the spectra of a specified data sample. Either a
point or a disc signal model can be computed. The
program then solves the Wiener-liofp equatic:: in the
frequency domain to get the optimum filter which
rejects the noise and passes the signal.

MULTICOH - this program computes multiple coherence
T ——— . . } .
functions for seismic array dat*a rapidly and efri-
ciently. Given an original set of N subset data
~hannels, the program will compu:e th. N-1 multiple
coherence tunctions:

ai(N-I/N..., N-i+l) i = 1... N-1

The program will then reorder the N data channels any
number of times, each time computing another N-1
multiple coherence function. The print-out includes
a description of the notation used. Optional print-
out includes all the auto and cross spectra. 1In
addition a provision exists to plot the multiple
coherence functions. The Cooley-Tukey method of
spectral estimation is used to obtain high speed.

BULALIST - to add recording stations to a list of
earthquakes on magnetic tape.

ATODALL & ATOD20 - conversion of two A to D conver-~
sion routines to FORT32N-63.

4. Analog Composite Tapes - 3 including:

a.

C.

Made by SDL

- foecial UBO composite
Made by Geotech

- COMMODORE

~ SCOTCH

Data Compression

This is a continuing routine operation, and production

is maintained at the level needed to meet the requirements of the
field operation (LRSM and U. S. Observatories) and the Seismic
Data Laboratory. For this period. 2,515 tapes were compressed.

D.

Automated Bulletin Process

April, May, and June 1967 LRSM and Observatoxy
bulletins were processed during this report period ad “orwarded to
Geotech, A Teledyne Company, for checking .'4 publicatio.

=3
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APPEIIDIX A

ORGANIZATIONS RECEIVING SDL DATA SERVICES |

July - September 1967

california Institute of Technology
Colorado School of Mines
Earth Sciences, Teledyne
General Atronics Corporation
Geotech, Teledyne
Hollaman Air Force Base
IBM Corporation
Lamont Geophysical Observatory
Lawrence Radiation Laboratory

' Lincoln Laboratory, MIT
Oregon State University
Penn State University
Texas Instruments, Inc. '
U. S. Coast and Geodetic Survey

vitro Corporation I
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